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STATISTICAL MAGNETOHYDRODYNAMICS AND REVERSED-FIELD-PINCH QUIESCENCE*

Leaf Turner

Los Alamos National Laboratory
University of California

Los Alamos, New Mexico 87545 U. S. A.

Abstract

A statistical model of a bounded, incompressible, cvlindrical magnetofluid
18 presented. This model predicts the presence of magnetic fluctuations about a
cylindrically=-symmetric, Bessel-function-model, mean magnetic fileld, which
satisfies V x <B> = p <B>. As 6 + 1.56, the model predicts that the significant
region of the fluctuation spectrum rnarrows down to a single (coherent) m = |
mode, An analogy between the Debye length of an electrostatic plasma and u'l
suggensts Lhe physical validity of the model’s prediction of <S8R(r)4B(r’)> when

IR MRS



1. INTRODUCTION

Certain phenomena appear to occur often in reversed-fietd-pinch experiments
such as ZT-40M and HBTX-1A. After an initial turbulent setting—up phase, the
plasma relaxes to a quleter reversed-field configuration, with a 0 value of
approximately 1.5-1.6 and with 1low-m modal activity evident. 1In peripheral
magnetic-field data obtained from HBTX-1A, coherent m = 1 activity 1is observed

only during quiet periods. ]

A rigorous treatment of three-dimensional turbuient dynamics of a bounded,
driven, dissipative plasma i{s well Ddeyond current analytical and numerical

capabilities.

We shall outline in this paper a statistical model of bounded,
three-dimensional, incompressible, ideal magnetohylirodynamic turhulence 1in an
attempt tc explain the salient properties of the relaxed, reversed-field-pinch
configuration., Our treatment will 1ignore the effects of dissipation, and
therefore will be unable to portray realistically the high-wavenumber spectrum
or Lhe equivalent short-range correlations. Our model? is rooted {in Taylor’s
ploneering work on the reversed-field pinchd as well as 1in our earlier

collaborations with Montgomery“ and Christiansen.?

although this paper confines {tself to heuristic rensoning, a much

lengthier, mathematically more rigorovs paper is in preparatlon.G
2. THE ALGORITHM

The flelds necessary Lo the apecification of the atate of a system’s
confifguration are expanded in terms of a complete Ret of atutes, the amplitude
of ench state beinpg Aapecified by a time-dependent spectral coefficient, vi(t).
When one inserts such an  expansion Into the governing dynamical cquatfons
(agsumed Lo he ldeal; 1l.e,, losnless), one obtaine an {nfinite=dimensfonal
representation of the equatifons; that 1s, an Infinfte gset of equatfions,
generally nonltinesr, apecifying the time-rate-of-change of each coefflicient ag a

function of the current values of all the coefficienta. Inrtenad of attempting
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an actual solution of these equations, ve instead shall follow a path suggested

originally by Lee.’

We first aecertsin that E aéi(t)/aci(t) = 0, thereby demonatrating the
validity ot a Liouville theorem 1in the infinite-dimensional '"phase space"
spanmmed by the 1linearly independent components of the spectral coefficientsa.
Therefore an ensemble of points (each point uniquely spz2cifying & unique
configuration of the system) flows incompressibly in this "phase space." We then
identify the quadratic invariants of the ideal equations, such as the kinetic
energy and the enstrophy of a two—dimensional, incompressible Euler fluid, or
the total energy, the cross-helicity, and the magaetic helicity of &
three—=dimensional, 1incompressible magnetofluid. Pnetulating equal a priori
prubability of finding the system in any region of the "phase space" allowed by
the constraints imposed Yy the quadratic invarianta, we invoke the machinery of
classical statistical mechanics to derive the canonical distribution for the
absolute equilibrium ensemble. This distribution is the normalized
exponentiation of the linear superpositiocn of the quadratic {invariaats, each
wlth 1its own Laprange wultiplier (inverse "temperature”) and each expressed in
terms of the spectral coefficients, The mean value of any physical quantity of
the system, which 18 a function of rhese coefficients, 18 then assumed to be the

ensemble—averaged value,
3. APPLICATION TO A TWO-DIMENSIONAL FEULER FLUID

We shall demonstrate the use of our algorithm 1in the context of a
uniform-density (taken o be unity), two-dimensional, jperiodic, {ncompressible
Euler fluid. This fluid 18 described by:

du

_r'- + (L'.v)‘_l - —"p. V.E - 0'

in which the fluid velocity, u(r,t), {8 i{n the x-y plane =nd hoth {L and the
pressure, p(r,t), are functions ot only x and y. By virtue of the periodicity,

the velocity fleld han the Fourfer expansfon:



u(r,t) = § E(E,t) exp(iker).
k

One readily can demonstrate the conservation of the energy,

and of all the moments of the vorticity,

aln) - [ u" d?r

where

w(:'t) - X ;(E.L)exp(ikor) z 2+ x u(r,t). (1)
k

The domain of integration is the unit periodic cell of area, A. One notes that

~ ik x z ~
ulk,t) = . —.— w(k,t).
kl

Renlity of Lhe vorticity requires that

Wik, t) = w4 (=k,1). (2)

Conaervation of a{1) allows us to chocse ;(O,L) = 0. One eanslly can confirm the
vaiidity of the Liouville theorem in the {nfinfte-dimennional "phase space"
spauned by Lthe linearly independent, real and imaginary parte of the apectral
(Fourfer) coefflcientn, ;(E,L). Retaining the conatralints of cnly the quadratic
invarianta, energy and enAatrophy, {in the preacription of the absolute

vquilibrfum ensemble distribution, Deq' we find:



2 2, -
Dq = expl - 8(a() + 26)] = exp[- 8J(Z 1) U1 2],
k k

where the inverse "temperatures" assoclated with the enstrophy and energy are B
and KZB, respectively, and where the enstrophy and energy have the respective

Fourier expansions:

a(2) o ¥ |G(E)|2.
k

la(k) | 2
k2

(]
1
1=~

Using the reality condition for the vorticity, eq. (2), one can verify that the

mean value of ;(E);(E') for this ensemble is given by:

~ ~ kz
Cw(k)w(k’)> = L

kg (3)
-? = ze(kz + KZ)

where the Kronecker delta equals one if L + k° = 0, and equals zero otherwisge.
A direct consequence of eqs. (1) and (3) is the autacorrelation function of the

vorticity:

1 ¢ k2 ,
Cwl()u(r’)> = 5, )_-;—-Eexplﬂ_c'(}_' -]
k k€ + «

If one lets the perfodic cell become arbitrarily large, this sum apnrcaches the

t.wo~dimenifonal {ntegral over all k, so that in the lim{t we obtain:
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kZ

<w(Dw(zr’)> = [ d%
k2 + «

> exp[ike(r - )]

2
« [ d% (1 2‘ -_E) explik*(x - )]
ke + «

= 8(2)(r - £) + €2 G(r,r":0), (a)

where 6(2)(5 = t’) represents the two-dimensional Dirac delta function. Noting
that the Green’s function, G(r,r’;x), 1is the sclution of the differential

equation,

(92 - «?) G(r,r";x) = 8(2)(x - r’)
that vanishes as |r -~ r’| * o, we finally obtain:

2
<w(Duw(r’)> = 6(2)(5 ~r’) - ;; Rolxiz = '), (3)

where Ko is the modified Ressel function of the: second kind.®

This seremingly innocent result 1s actually quite profound. The delta
function, of course, reflecls the equipartition of an Infinite number of
high-wavenumber deprees of fre=dom of our continuous Fuler fluid and 1is the

spatial representation of the classtcal Rayleigh~Jeans ultraviolel catastrophe.

The surprising teature of our result is that {t 1s precipely the resnlt that
Montgomury ohtained for Lhe charge=denrity autocorrelation Funciion from a BBRGKY
hierarchy calculation, truncaled al second order, of a dlscretized versfon of
the two~dimenaional, electrostatic, guldinpg~center plasma model.d This model 18
isomorphic o the Fuler tluld model that we have been discussing. Althouph the
physice of the continous and the discrete modelr of the two-dimensional fluid,
a8 well as  the approximations employed 1{in thelr analyses, are manifestly
different, these statistical calculations lead to fdentical resultr! Thus the

presence of Lhe delta=function {in eq. (5) {a consistent with the phvsical
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interpretation tnat the continuous Euler fluid’s mean configuration described by

this equation has a discrete vortex nature.l0

If one were to write down the three-dimensional version of the right-hané
side of eq. (4), curiously one would obtain the standard Debye-Hickel formula
for the autocorrelation of the fluctuations of the electron number density in an
infinite, homogenenus, three-dimensional, electrostatic electron plasma that 1is

in thermal equilibriumll:

vy o« 60 (e _ oy k2 e e

In this equation, n(r) reprecents the electron number density and k, the inverse
Debye length. This formula, which is physically valid when |r - r’| > x_l, is
Inaccurate 1in 1ts short-range predictions because of the failure, in this

domain, of the weak=coupling approximation used in its d« . ivation.
We have belabored this discussion in the attempt to delineate two points:

(1) Dynamical understanding of short-range correlations
(high~wavenumber spectrum) has no necessary bearing on the understanding of
¢{ther the longer-range correlations, il =’ » K-l, or, equivalently, the
low-wavenumber spectrum, k < «x.

(2) The squared 1length, x-z, 1s merely the ratio of two inverse

"Lemperaures."

In summary, Je believe that if dissipative effects are sufficiently small,
classical statistical mechanics of 1ideal systems may provide a credible
npproximation of both a turbulent spectrum when k € ¢, and a two-point
correlation function  when lr =1 > 1, One may not uneed a prior
understanding of the effects of dissipation on the high-wavenumber region of the

spuectrum.
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4. APPLICATION TO A THREE-DIMENSIONAL, BOUNDED MAGNETOFLUID

We now shall apply the algorithm to a wuniform~density, three=dimensional,
incompressible magnetofluid bounded by an infinitely long,
circular-cross-section, perfectly conducting wall, of radius rn, concentric with
the =z-axlis. An axial periodicity length of L is assumed for the magnetofluid.
In the next section, this analysis will 1lead to our finding that the mean
magnetic field, <B>, satisfies the force-free equation:

lulrg

V x <B> = u <B>, 0= ——;

where u represents the ratio of the inverse "temperature" associated with the
magnetic helicity Lo that assoclate]l with the energy. The discussion of this
section will also prepare us for the next section’s Lreatment of Lhe

autocorrelation tensor of Lhe field fluctuations, (SE(E)GE(E')>.

The dynamical equations describing the evolution of the magnetofluid are:

av
pO(T:_+ velUv) = -Vp + _uL(v x B) x B, V.y = 03 (6a)
P
9B
- Vxxm, VB=0; (6b)

where Mp 1s the magnetic permeabllicty of free space and hears no relation to the

parameter u. The required boundary conditions are _B-nlrn = !-5|r0 = 0,

The mapnetic and velocity flelds can be expanded in an appropriate complete
el of basis functions.? The dynamical equations then can he shown Lo yield a
Liouville theorem. Since the details will be presented elsewhere,® we shall

cemit them and take the heuristically direct path to the salient results.
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There are three quadratic invariants of eqs. (6a,b), given the assumed

boundary conditions; namely, the energy:

- 1 a3r PO d3r
W=W \ = 2 = __ 2 . 7
B + \«.K, WB = 7—-—‘_‘ j B = WK = v 7 (7)

the cross helicity:

[SV]

N
=
[

and the magnetic helicity:

b
Hi
IH
IR
(]
.
oo
o
(V2]
~
.

(8)

N
=
[

For a prescribed magnetic fleld, E(E,L), bearing a conserved axjal magnetic
flux, nrOZBO, we can speclfy unfiquely the vector potential in the Coulomb gauge
by the condition that V x 5(£,L) be the prescribed field and that

ACL,t) = Bod + AT(r,0), (9)
where
Al xni =0, (10)

The first term an the right-hside of eq. (9) originates from the presence of a
net axial magnetic flux; the magnetically fluxless, second Lerm originates from

the presence of current density In the magnetofluid. Equations (9} and (10)
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guarantee that the magnetic helicity integral, eq. (8), 1s a measure of the

knottedness (or self-linkage) of the magnetic fleld within the magnetofluid.5»®

To expand QJ, we shall use the orthonormal set of fluxless elgenvectors of

the curl operator:

¢ x Em"n(E) - umlnsmln(f,)' (11)
that satisfy:

grfnan) . = 0. (12)

- 0

"ollowing Chandrasekhar and Kendall,12 we generate these elgenvectors from the

scalar solutions, J (a j.r)exp[1(m@ + ky2)], of the Helmholtz equation,

(vz + u§£“)¢m£n(£) = 0'

where agpn = (“ﬁln - ki)“2 and kp = 27&/L. One can verify that the required

elgenvectors are gliven by:

Emln = Nlnln[umlnv x ¢mf-n;_ + 7V x (V x ¢m1n;)]' (13)

where z is the unit axfal veclor and Nmﬂn is the normalization constant that

guaranlLees:
I E*mln{r.). m’l'n’(r) d3r = C '6 16 ’ (IA)
2 \I)-§ ~7 7=l mm’°2L4" ®nn” *

Our 1integration domaln for the c¢ylinder 1s always taken to bhe 0 < 8 < 27,
0 <z<L, 0 <r <ry. The boundary condition, eq. (12), which {is -rivially
satlsfled when m = R = 0, ylelds
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mChy onT0 ) m{ e gnto) + (kgrg) (apgnrg)In(angarg) = O (15)

wien m2 + 22> 0. When m and f are simultaneously zevo, rthe condition of zero

flux requires that
J1(|U00n|f0) = 0. (16)

We then find that QJ(E,L) has the solenoldal expansion:

éJ(z,t) =) cmit(t)[gmln(g) - vn(r)yg, (17)
min

where the solution for rM&n 1mmediately follows from the solenoidal constraint,

Vzcmln(s) = 0, regularity at the origin, and the boundary condition, eq. {(10):

N 2, 7 ( rn)

len(r) N [ mn®menm' mLnt0 ] I (Ikgir)expl1(m + kg2)], 2 % 0;

- kg Im(lkier)

iN 2, J37(] Itg)

g"On(ry = mOnn0n~m” 1 Fn0n 0 r|m|exp(im9), m # 0;

~ nr fm|~1

0

27075 = NooauBondol I ko0n ! €0)2;

where T represents the modified Bessel function of the first kind.® Reality of

A demands that cgg (t) = ¢* _,..

Given this expansion of A, we shall derive the expansion of the magnetic

field, E(:,L), where

B(r,t) = Boz + BJ(r,1).
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The total, time-independent, axial magnetic flux of B(r,t) is borne hy BOE. The
fluxless second component, EJ(E,L), arises only from the presen e of current

density in the magnetofluid. We shall suppose that:

Bl(r,0) = ¥ x A% 0) = [ dppn(Ou 6",
min

Using eqs. (11) and (14) and integrating by parts, we find

3 3
Ungadngn(t) = [ VIAT(E,0) w gAY ST+ [ g gap”(ra) g"EN(e) T

Fquation (10) ensures the vanishing of the first integral. Using the e¢xpansion
of 5J - eq. (17), the boundary conditfon = eq. (12), and the fluxleesness of the

Emln-s' we obtain the result, d o (t) = ¢pp (t). Thus, we conclude that

E(E’L) - BOE + 2 len(l\umlngmln(s)' (18)
m&n

In contrast, one should he carceful Lo ohserve that the expansion of the current
density distribution 13 nnt purerally obtainable from term=—bv=term curling of

the expansion, eq. (18).©

By virtue of our algorithm, the distributfon of our absolute equilibriom
ensemble 1{s proportional to exp| - .up(w - uK)/e=MH./t]l. For simplicity, we
shall consider only the case 1 = o {n which the volncity dependence can  be
factored out o/ the distribut/on and ther«for: has no e¢ffect non means values of
functinnsg that are solely magnetic—-fleld dependent. We thus need to consider

only the distribution,

"

“¥p .
Deq(z) = exp[ - e IHH(I) = K(!)]]v € > 05 (19)

where T 18 the Infinfte-dimensional vector formed from the linearly {ndependent,



-13-

real and wmagiuary parts of the spectrzl coefficients, {cmln}' that completely
specify the ragnetic field configuration. The mean value of any quantity, Q(I),

18 then taken to be Lhe ensemble~averaged value:

[ Q(I) D (D) df
TP o(I) dI

«Q(r) > =

where Lhe "phase space" integration over T {s defined to be integration from ==
.0 4+ for ecach of the linearly {ndependent, real and imaginary parts of Lhe

spectral coefficlients.

To obtain Lhe functional dependence of nﬁq(g), we merely 1insert the
c-pansions, egs. (9), (17), and 18, 1into the expressions for WB and K,
eqs. {(7) and {B8)., respectively. Using the boundary condition on the
vigenvectors of the curl operator - eq. (12), thelr fluxlessness, and thelir

mutual orthonormaiity = eq. {14), we obtain:

. 2,2
y— * ) lCqan! ”mln]v
p min

l r v
K "fﬁ_t_nﬂrﬂ L <oon * ) “mlnlumlnlz]'
p n men

Hence, the distribution has the structure:

l ‘. . » . ] L) \ .
exp( - € L 1ehonCufon = oon) + WhaTacgon!- T % [CZgy = Mingn) Vempai *T}s
n m &n

where oaly states satisfyling m? + 225 0 arv Included In the pgecond summation,

We then find that
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urq

2( "60n = Wlpop)

and

{éc Sch,. > = (21)
m&n"“mLin
z(uéln = Mingn)

are the only nonvanishing mean values both of tLhe coefficents and of Lhe

quadratic products of the coefficents’ fluctuations, where:

Gcmln Z cptn = <Cpan’-

Note that both the integrability of rLhe distribution func.ion and the positivitry
of all th» {l8c, 4,12 requires that |u| be less than the smallest positive
eigenvalue of the set {upo 1}, which we shall call wgpy,. In the limit of large
agpect ratio, L/ro, Taylor has shown that p 4, occurs al approximately 3.11/rq
when |mj = 1 and |kglrg = 1.23. The relative signs of m, kg and p are governed
by the constraint:

sgn(mk gp) = +. (2)

Using eq. (21), we can evaluate t(he mean magnetic energy and the menn

mapnetic hellcity present in the magnetic fluctuations aboul the mean field:

1 . > Hm £n
<Oy = . I QbcppntDwdgn m - 1 omm— (23n)
Iﬁ; m&n Ei; min “mgn TV
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oKy =S 7 LI 1l < gy g (23b)
E"P min Ymgn " ¥ "

We note from eqa. (15) and (16) that each eigenvalue that occurs in the sum
over statce can be paired off with an oppositely slgned counterpart. As a
result, we find that asymptotically, for large W, yq» e€ach pair contributes a
term in <6K> that 1ie proportional to u/q:ln; whereas the corresponding term in
<5wB> i1s asymptotically constant. This behavior of the =nergy spectrum of the
magnetic fluctuations, characteristic of the Rayleigh-Jeans ultraviolet
catastrophe 1in a continuous system, 1is v/tiated 1in a physical plasma by
dissipative effects. We thus obtain a heuristic understanding of the enhanced
decay of magnetic energy with respect to the decay of magnetic helicity in a
turbulent, dissipative magnetofluid that is bounded by a perfectly conducting

wall.

Having noted that the presence of the two-dimensional Euler fluid energy led
to the analogue of an inverse Debye length, k, allowing for rveasonable spectral
predictions for k € k, we surmise that the presence of mugnetic helicity in our
three-dimensional magnetohydrodynamic model muy 1lead to an analogue of the
inverse Debye length; namely, u, We are thus suggesting that the 1deal model
may  provide a reasonable description of physical data taken from
reverved=field-pinch experiments having suffictiently low disaipation when such
data  consist of two-pol:t correlations satiaf -ing |r - ¢’y > u'l. or
equivalently, when such data refer to spectral modes whose wavenumbers are less

than or of the order of yu.

Finally, one should note from eqs. (23a,b) that when |u| ¢ Umy, Aand € ¥ 0,

the fluctuation spectrum containe a broad band of spectral contributions.

However as py * Unin @nd € + 0, such that

n

+ 4y <6KD>,
Upgn — W P

the nmignificant reginn of the apectrum narrows. We find that only one apectral
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mode, the m = 1 mode that corresponds to the value yu = Hpin d1scussed earlier in
this section, ylelds a finite contribution to both the helicity and energy of
the magnetic fluctuations. (A similar result occurs if u + ~u , .) In addition,
the energy generally receives a finite contribution emanating from infinitesimal
contributions of a large number of high-wavenumber modes, the details of which
await an understanding of the dynamical effects of dissipation. 1f
<6W> =y <6K>, then this high-wavenumber contribution would be absent.

This spectral narrowing as both € + 0 and u + y (which we shall note 1in

min
t ¢ next section correspends to @ #+ 1.56) may be r:lated to the quiet behavior

at 0 = 1,5-1.6 obscrved in the ZT-40M and HBTX-1A experiments.
5. THE MEAN FIELD AND THE FIELD-FLUCTUATION AUTOCORRFLATINNS

In this section, we shall conmider the effects of the m = £ = 0 modes alone.
From eq. (20), we observe that these modes are the only ones needed for
evaluating the mean value of B. Althcugh they are insufficient for Lhe complete
evaluation of the autocorrelation tensor, <6§(£)6§(£')), which requires a much
lengthier presentation, we shall nevertheless evaluate their contribution o
(65(5)6§(5')> in order to demonstrate a few of the techniques requircd in the

complete analvel..®

For cc venicnce, we shall begin by defining a new notation for efffcient

treatment of the m= 2 = 0 efgenvectors and eigenvalues. Thege evigenvectors

satisfy:
Vx EXr) = tu£¥(r) u, > 0 ne 1,2, (24)
n nAan » n » ’ ’ L]
rn
which has the solutfons, orthonormal with respect to f rdr:
0

t Jq( )6+J( )f
e (r) - LA M e, Wil (25)
Tolo(unro)

where 6 i the unit vector {n the azimuthal direction. The condltion,



J1(uprg) = O,

guarantees their fluxlessness.

Using eqs. (18) and (24), we note that B(r) can be expanded as follows,

using the new notation:

CB(x)> = Byz + L wy [<eh>Eb(r) = <«epdEn(n], (26)
n=1

where, via eq. (20),

uro
(cﬁ) - - [--__

2*—-————] B (27)
2(us ¥ uuy)

Inserting eqs. (25) and (27) into eq. (26), we conclude that the infinite sum

uINVerges Lo:13
‘R B() 'Ull‘o : - N - 28
B(E)> = -5 [jf(r;r;ay]lﬂﬂ"(v)\l(lulr)o Jo(luir)z], (28)

whoie total magnetic flux 18, of course, ﬂrnzno. If one calculates the 0O

parameter of this mean fleld, one finds that

lulrg
0" e p—.
7
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Recognizing that the mean magnetic field for the ensemble distr’bution
gpecified by eq. (19) also must be the most probable field, one sees that <B(r)>

must be the solution of the fixed-flux variational problem:

5[WB - uK] =0, flux = ﬂrozBO.

This equation is precisely the mathematical formulation of Taylor’s minimum

energy principle.

The value of cur ensemble distribution, eq. (19), 1s that it permits
calculationo of expectation values iavolving higher moments of fields. We shall
now utilize it to calculate the m = £ = 0O contribution to the fleld-tluctuation

aulocorrelation tenscr.

We ohserve that

COB(r)BB(r’ )1 gag = L w28 DENIE(r") + (8 DEL(D)E(r")]
n=1
bl w + + ’ - - P
s (D)E(r’) £ (r)E (1)
S $ ] IO + RmEED) + T Salr)  &n("in
n='

1,

"-1 Un - M un + Y]
where we have uaod, via eq. (21),
>
2
2(ug ¥ wup)
for the engemble—averaged value of (Gc:)z.
I1f we separate the 0= and z-components and  Introduce the convention that

My = 0, we obtain:
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< I ur) I Cupr’) s = Jouar)Jplur’) s

<BB(r)SB(r")>1 o gup __e__ ): { 10000y Gyt oy € 3y lo HalJJol gt 122
rO =] [Jo(u“ro)lz 1‘02 n=0 [Jo(unro)lz
- 2 J1(uar) I () s o 2 JoCuyr)Iglunr”) ..
T L TR, jobe £ 7 (22 SJPS

rg? n=l w2 - u? [Jo(uprg) 1?2 192 n=0 uZ - u? [JoCuyrg) 12
° 3y Cupr)dglugr )8z + Jolunr)dy Cugr’)z8
+ _E: ( ”n__){ 1V HnT/J0t Uy 0t HnTJJ 1\ ¥y iy (29)
rg? n=0 w2 - 2 (JoCuyrg) ]2

From the observation that each 3et of functions, {21’2Jc(unr)/r0J0(unroj}

and (2llzll(unr)/roJo(unro)}, provides a complete, orthornormal set of basis
functions, the sum of the first two sums in eq. (29) immediately follows:

e - o,

wrere I 4s the {dentity matrix. Similarly, the third and fourth sums can be

~

seen Lo be related to the solutions of the Gre. ''s equation:

3.3 _ m? 2 oy o S~ 1f)
tae —r—2+ u2) Gple,r’5u) ——

(

] o—

with m = 1 and O, reapectively. The desired solutions are regular at the
crigin. The first must vanish at the boundary, whereas the radial derivative of
the second must vanish at the boundary. Solving for G1 leads Lo the result for
the third sum of eq. (29):

en(urg) 2 clurgl 33( 1 uirg)
Y T(r,wW)T(r’,n) - LA 0

l‘r() O(HJ‘T()) zr()le(lU'To)

Tu(r)zu(r' )’

where



T(re,w) = 3 (1uir)8,

T(ry, 1) = [YgCluleg)d (luiry) = JoClulrg)Y (lulry)]8,
T (o) = J Chelx) 5

S CTE IS RN ATNT S B

and where r¢ and ry respectively denote the lesser and greater of r and r’.

After evaluating Gy, we can perform the fourth summation of eq. (29) to

obtain

en(urg) 2 .
= - P(r,w)B(r’,u),
4ro23) (lulrg)

where

P(re,w) = Jo(lult)z,

[J1(|U|f0)Y0(|U|r>) - Yl(lulro)J0(|N|T>)];-

E(r>.u)

The final sum can be oxtracted from the fourth sum by allowing the curl

operator to acl appropriately on Lhe fourth term., 1If we define:

WTa(ryu) = Vox B(r,n),

s0 “hat



Talromy = Jl(luir<)3.
To(rs,m) = [JCiuirg)Y  Cluiry,) = Y Cluirg)J Cluiry)]e,
then the final sum is oxpressible as:

em(urg) ? sgnu)
- - [Tp{r, E(x’ 1) + B(r,w)T (", W]
ATOZJI(IUIro)

If ¢to tLhese contributions to the field=fluctuation autocorrelation tensor are
added the contributions from the m2+ 22¢ 0 states, the complete

autocorrelation tensor, <SB(r)éB{r’)>, 1is ottained.©
6. STRUCTURE OF THE QUIESCENT STATE

We shall analyze some properties of the theaoretically "quiescent" state that
forms as 9 ~» uminrolz ~ 1,56 and € + 0 (at lklrg = 1.,23), discussed 1in eec. 4.

We shall assume that i + +y We then iind, in accordance with the relative

min®
sign constralnt, eq. (2.), that

<6R(r)éB(r")> « Re[;Q(£)§a(£')] + high-wavenumber terms, (30)

where §Q is the efgenfunction of the curl with m=1, kyrge= 1.23, .und

urg = 3.11, and, of course, where Re is the realit orerator.

’

When r = r’, let us consider the propertifes of Lhe first ‘erm of eq. (30),

which 18 a2 3 .+ 3 symmetric matrir:
Rel€0(r)ga(r’)i
§q(E)8q(E") ).

Fquation (13) demonatrates tt~t 1, the complex plane, the phase of the radial
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component of EQ is shifted by /2 from that of the azimuthal and axial
components. Thus the r@, rz, 6r, and zr-components of this matrix vanish. The
determinant of this matrix vanishes because 1t 18 eqgua. to the product of
|(§Q)r|2 with a vanishing determinant of a 2 x 2 symmetric submatrix.
Therefore, the three orthogonal, principal axes are oriented such that one is in
the ;-direction. The two nonvanishing eigenvalues, one assoclated with the
radially-directed principal axis, define a plane 1in which the fluctuations
OouCur. Computationally we find that the local normal to this plane is never
more than about 8° from the 1local direction of the mean magnetic field
(evaluated at © =1.56); 1.e.. the fluctuations conLained in the first term of

eq. (30) are approximately orthogonal to the mean magnetic fileld.

Although we do not generally anticipate valid results for lr = £'| < u'l due
to the short-range cffects of the high-wavenumber contributions, we can suppose
that <8W> = p ,; <8K>, which we have seen elimirates these contribuiions from the
qulescent state. Thls narrowing of the spectrum down to a single m = 1 mode
gignals the onset of coherent m=1 activity superimposed on a
cylindrically-symmetric state. This superposition 1esults In the helical

force-free state, originally described by Taylor.3
7. STATUS OF THE STATISTICAL MODEL

The mathematical analysis of the complele autocorrelation tensor,
<5§(£)6§(5’)>, 18 detailed in ref. 6. We anticipate comparison of this tensor
with experimental data as well as with data extracted from computer simulations

of the dynamics of a bounded, three-dimcnsional magnetcofluid.

We prutefully acknowledge the strong interest and kind support of Don
A. Baker, in addition to the many useful conversations with him, throughout the

research period.
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